Farmers Access to Climate Information for SDG Goals in Climate Change and Food Security.

Murgor, Daniel Kipkosgei (PhD)
danmurgor2@gmail.com

University of Eldoret, Kenya
Outline

- Definitions (Climate Change & Food Security)
- Climate change linkages with agriculture and food security
- Climate change impacts
- Data and information access in SDG 2 and 13 mitigation
- Type of information product/services to mitigate SDG 2 and 13
- Information access in sustainable & climate smart agriculture
- Agricultural Innovations
- Recommendations
NASA defines climate change as: "a broad range of global phenomena created predominantly by burning fossil fuels, which add heat-trapping gases to Earth’s atmosphere."

- Increased temperature,
- Sea level rise; ice mass loss …..
- Shifts in flower/plant blooming
- Extreme weather events.
FOOD SECURITY

- Food security exists when *all people, at all times, have physical and economic access to sufficient, safe and nutritious food that meets their dietary needs and food preferences for an active and healthy life* (World Food Summit, 1996).

Dimensions of food security:

- **Physical availability** of food,
- The economic and physical *access to food*
- The *food utilization*…. Nutrients influenced by people’s health status
- The *stability of food security* at all times
SDG Goals

- **Goal 2:** End hunger, achieve food security and improved nutrition and promote sustainable agriculture (5 + 3 sub targets)
 - Food Security, End Malnutrition, Smallholder productivity, sustainable & Resilient production system, Agricultural Biodiversity.

- **Goal 13:** Take urgent action to combat climate change and its impacts (3 targets)
 - Resilience and adaptive capacity
 - Integrate climate change measures to national policies, strategies & planning
 - Educational awareness
Agriculture is not only a fundamental human activity at risk from climate change, it is a major driver of environmental and climate change itself.

- A significant contributor to land degradation and, in particular, a major emitter of greenhouse gases.

- Today, approximately 795 m people across the globe do not have access to enough food for a healthy and sustainable life. Majority in underdeveloped countries (Laperrière, 2019).
Agriculture contributes to climate change.

Climate change increases vulnerability of agriculture.

Agricultural frontier expansion is based on deforestation.

Agriculture reduces forest ecosystems, climate stabilization, global service.
Anthropogenic Causes – enhanced GH Effect

CO₂ to Atmosphere
Human Activity
• Combustion: Burning of coal and fossil fuels
• Deforestation

Methane to Atmosphere
Human Activity
• Landfills
• Agriculture (rice)
• Livestock

Other gases to atmosphere
Human Activity
• Ozone from car exhausts
• CFC’s from aerosols
GHGs Emissions - Agricultural Sector

Contributes 20% of global anthropogenic GHG emissions

- 70% of global N20 emissions from artificial fertilizers
- 5% of global CO₂ emissions from fossil fuel consumption and biomass burning
- 50% of global methane emissions from enteric fermentation and rice paddies
CLIMATE CHANGE IMPACTS ...?

- Changes in temperatures and precipitation patterns will lead to changes in crop yields.
- Length of growing season will change.
- Natural disasters will decrease yields.
- Demand for water is increasing due to population growth and economic development.
- Biodiversity shifts – changes in crop varieties.
- New pests and diseases; it alters relationships among crops, pests, pathogens, and weeds.
- Food Security and Under-Nutrition.
Impactsfood security & under-nutrition...

- Climate change exacerbates under-nutrition through three causal pathways related to (or though combined effects on) food security, care practices and health

- Increase the incidence of diseases, such as malaria, thereby increasing the caloric requirements of affected populations
Impact.... Climate Change Reduces Global Food Availability

Warmer temperature and changing rainfall patterns may reduce global food production by about 10% by 2030 and by more than 20% in 2050.

New crop modeling results: +1°C => 4 to 6% yield loss in global wheat

Source: Bing Liu et.al. 2016, Nature Climate Change
Climate-Sensitive Elements of the Food System –

COMPONENT
- Photosynthesis (temperature and soil moisture)
- Weeds
- Pests
- Pathogens
- Floods, storms
- Droughts
- Conflict
- Poverty
- Transport
- Processing
- Distribution
- Storage

Food yield

Stability of food supply

Access to food

Food end-use

Modeling to date focused on CC impacts based mainly on the photosynthetic yield – other paths affect F. yields
Potential climate changes impact

Temperature

Sea level rise

Precipitation

Impacts on...

Health
- Weather-related mortality
- Infectious diseases
- Air-quality respiratory illnesses

Agriculture
- Crop yields
- Irrigation demands

Forest
- Forest composition
- Geographic range of forest
- Forest health and productivity

Water resources
- Water supply
- Water quality
- Competition for water

Coastal areas
- Erosion of beaches
- Inundation of coastal lands
- Additional costs to protect coastal communities

Species and natural areas
- Loss of habitat and species
- Cryosphere: diminishing glaciers

Source: United States environmental protection agency (EPA).
Poor maize crop due to less rain, Uasin Gishu County, Kenya (Field data 2017)
Solar drying of wheat (too much rain during harvest) within Eldoret Town in Kenya, 2019
DATA AND INFORMATION ACCESS IN SDG 2 AND 13 MITIGATION

• Open data and information has been in use over a number of centuries in agricultural systems - ---

• Mesopotamians wrote information on cuneiform and farmers in the 1700’s observing patterns in the weather to predict when the best time to plant is ---

• Information recorded for use --- availability of info was assured....
DATA AND INFORMATION ACCESS IN SDG 2 AND 13 MITIGATION

- The challenges of *climate variability* requires availability of *information* on *climate* and *weather* that will reflect *onset & cessation dates of seasonal rains* and *advisories* to help farmers in their farming decisions & avoid losses (Hansen, 2014).

- Adaptation strategies require quality *climatic and agronomic data* and *Information* on a spatial scale and time series known for it to be meaningful for agricultural planning (World Bank, 2010).
Vulnerability---Information supporting farmers farm level decision-- UG, 2013

- Particular dates in farming: 84.9%
- Signs of rain: 36%
- Looking around: 5.4%
- Announcement from met depart: 3.1%
- Advice MoA officials: 7.4%
Farmers Calendar

<table>
<thead>
<tr>
<th>DEC</th>
<th>JAN & FEB</th>
<th>MAR</th>
<th>APR</th>
<th>JUN</th>
<th>SEPT</th>
<th>OCT</th>
<th>NOV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Know your crop and soil. Maize and wheat farm prepared</td>
<td>Prepare land and get inputs - fertilizer purchase etc</td>
<td>Planting both Maize and Wheat, weeding, spraying, and top dressing.</td>
<td></td>
<td></td>
<td>Harvesting, drying, marketing of crop and storage. Post-harvest handling</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Assessments: Monitoring for sector analysis and impact studies.

Analogues: Historical analyses of archived data for comparative studies (similar years on record).

Forecasts: Early-alert of impending episodic events affecting agriculture, such as flooding, drought, severe storms, heat wave, freeze etc.

Outlooks: Guidance for long-term scenario analyses, including impact of climate extremes, variability and change.
Type of information product/services to mitigate SDG 2 and 13

- **Advisories** on farm management: -- Rainfall onset & cessation dates, planting/harvesting dates, weeds and disease spraying, irrigation scheduling...

- **Decision-Making Process:** Right information to the right user at the right time in the right format for informed decision making!.... *(Downscaled and tailored info)*

- **10-day summaries** of crop and weather advisories, Plant density and soil moisture...
In India, the Integrated Agrometeorological Advisory Services delivers crucial weather info to farmers to help them adapt. It aims to exceed its target of **10 MILLION FARMERS** in 2014.

Source: Aggarwal, 2013
EVIDENCE OF SUCCESS FOR SERVICES (BIG FACTS)

SERVICES
Seasonal rainfall forecasts are helping farmers in Senegal make decisions in a changing climate.

2 MILLION farmers in Senegal receive 10 day forecasts

2.5 million farmers in India receive 5-day forecasts and advice, having A 10 BILLION USD IMPACT.
Denmark slashed agricultural emissions 28% by tackling multiple sources.

- Biogas plants
- Crop burning ban
- Proper manure handling
- Reduction in aquatic contamination

28% reduction in GHGs and sustained growth from 1990-2010
GENDER DYNAMICS (FAO, 2011; IFAD, GENDER IN AFRICA SOURCEBOOK)

If women had access to resources, on-farm yields could **increase by 20-30%**.

[Diagram showing the increase in possible yield with same access to resources as men versus with current resources.]

This extra output could reduce the number of hungry people in the world by **12-17%**.
SUMMARY - TYPE OF INFORMATION PRODUCT/ SERVICES CONT...

Improving Agricultural Observatory: World Bank Supported

- **Global Field-level Insight**
 - Location-specific information to drive decisions
 - Detailed agriculture-specific weather forecast
 - Global footprint means coverage in rural areas

- **Increase Smallholder Farmer Yield**
 - Access to the most current agriculture data
 - Growth stage monitoring predicts farmer input timing
 - Climate-smart growing recommendations

- **Localized Agronomic Tips & Info**
 - Send the right tips to the right farmers at the right time
 - Pest & disease forecast alerts help farmers prepare
 - Crop suitability assessment enables credit risk scoring
Sustainable Agriculture (SA) refers to the ability of a farm to produce food indefinitely, without causing irreversible damage to ecosystem health.

Climate-Smart Agriculture (CSA) is an integrated approach to managing landscapes—cropland, livestock, forests and fisheries—that address the interlinked challenges of food security and climate change.
CSA consists of three main pillars anchored on access to information:-

- *Sustainably increasing agricultural productivity* and incomes especially rural people dependent on agriculture for livelihoods

- *Adapting and building resilience to climate change*.... Reduce vulnerability to drought, pests, disease and other shocks + improve capacity to adapt.

- *Reducing and/or removing carbon emissions*
Examples

- **China since 2014** - improved soil conditions, and boosted production of rice by 12% and maize by 9%
 & More than 29,000 farmers reported higher incomes + increased climate resilience

- **Senegal, the West Africa Agricultural Productivity Program (WAAPP)** has developed seven new high-yielding, early-maturing, drought resistant varieties of sorghum and millet in 2012.
 The varieties are being widely diffused to farmers and show positive yield results
AGRICULTURAL INNOVATIONS... EXAMPLES

- Perennials have the capacity to retain more nutrients and sequester more carbon than annuals (New Agriculturalist)
- Reintroducing orphan crops into agriculture: *Diversifies diets, increases nutrition, increases crop biodiversity*. Examples: Sorghum, Sweet potato, Cowpea, Cassava etc.
- *Payment for Environmental Services (PES)*. Pay farmers for ecosystem services including carbon sequestration, watershed services, biodiversity conservation (FAO PES)
RECOMMENDATIONS

• Building *high-level policy and public and private institutional support* for Open Access to data and information.

• Achieve a sustainable, optimized production level through the use of *weather & agronomic data* while maintaining environmental integrity and minimizing the degradation of soil, nutrient and water resource bases & ecosystem.

• Consumption adjustment & waste reduction
RECOMMENDATIONS

• Farmers to make effective decisions with more precision operations through the accessibility of open data and information.

• Governments to guarantee that climate information available at national or regional levels is distributed to those groups in civil society which support or represent vulnerable groups.

• Access to information on new technologies (e.g. methane inhibitors)

• Access to information on incentives for carbon reductions (carbon credits)
RECOMMENDATIONS

- Agro-meteorological services to target the use of mobile phones to disseminate their products and services—info access.
- Incorporating farmers’ perspectives through fusing on traditional knowledge systems and scientific information for synergy forecasting. (scenario building) + CSA and SA
- Climate modelers need to better understand end-user needs regarding required variables, data format, temporal frequency, spatial scale, length of data period and all important parameters for information to have impact.
• Researchers to focus more on research that is geared towards solving local community problems if we have to attain targets in SDG 2 and 13

• Community diagnosis for home grown solutions if research has to have any impact or sense amongst our local communities and the nation… hence impact on SDGs and Vision 2030.
ASANTE SANA

THANK YOU